Microscale Atmospheric Re-Entry Sensors

Justin A. Atchison JAA73@Cornell.edu Cornell University
Space Systems Design Studio

Co-Authors: Zachary R. Manchester

Dr. Mason A. Peck

International Planetary Probe Workshop - 7

June 14-18 2010

Dust Dynamics

Many Accelerations Depend on Length-Scale

Length-Scale and Altitude

Concept Design Simulation Conclusions JAA - 4 / 19

Area-to-Mass and Characteristic Length

$$a = \frac{F}{m} \propto \frac{A}{m} \qquad A = \kappa_A \lambda^2 \qquad \frac{A}{m} = \frac{1}{\rho} \frac{\kappa_A}{\kappa_V} \frac{1}{\lambda}$$

$$m = \kappa_V \rho \lambda^3 \qquad m = \frac{1}{\rho} \frac{\kappa_A}{\kappa_V} \frac{1}{\lambda}$$

Concept Design Simulation Conclusions JAA - 5 / 19

Spacecraft-on-Chip Architecture

- Application specific integrated circuit (ASIC) with spacecraft functionality: power, communications, data handling, etc.
- Extremely thin form factor

$$\lambda = 1 \text{ cm}$$
 $\varepsilon = 0.0025$
 $\rho = 2300 \text{ kg/m}^3$, Silicon
 $A = 1 \text{ cm}^2$
 $m = 8 \text{ mg}$
 $A/m = 125 \text{ m}^2/\text{kg}$

 $\beta = 0.036$

Sprite – A small, elusive supernatural being.

Concept Design Simulation Conclusions JAA - 7 / 19

Traditional Motivation

Concept Design Simulation Conclusions JAA - 8 / 19

Area-to-Mass Survey

Sprite — Phiphtie atticipe Collins of $A = 0.00049 \text{m}^2$ $A = 0.00049 \text{m}^2$ A = 0.0000228 kg $A/m = 0.3138 \text{m}^2/\text{kg}$

*All Images Courtesy NASA

Concept Design Simulation Conclusions JAA - 9 / 19

Sprite Prototypes

Concept Design Simulation Conclusions JAA - 10 / 19

Sprite Features

Concept Design Simulation Conclusions JAA - 11 / 19

Power Subsystem

"Bursty" Operation

Solar cells charge a capacitor bank until there is sufficient energy to operate the microcontroller and radio.

Concept Design Simulation Conclusions JAA - 12 / 19

Communications

Matched Filtering

- The radio supplies only I2 mW
- 512 bit pseudorandom noise (PRN) sequence key for matched filtering offers ~30 dB of effective gain
- Minimum-Shift-Keying (MSK) for lower bit error rates

Concept Design Simulation Conclusions JAA - 13 / 19

Atmospheric Sensors?

Concept Design Simulation Conclusions JAA - 14 / 19

How Does Dust Survive Re-Entry?

Mechanical Forces*

- Magnitude of drag depends explicitly on A/m.
- Terminal velocity depends explicitly on A/m.
- Ram pressure goes with $\rho_A v^2$.

High-Temperature Ablation**

- There is sufficient kinetic energy to ablate.
- Small grains achieve uniform temperature quickly.
- Aerothermal heat-input goes with $\rho_A v^3$.
- Aerothermal heat-input is a function of the local flow properties.

Dust survives re-entry by shedding the majority of its kinetic *Brownlee, D.E., Ann. Rev. Earth Planet. Sci. 1985. The refied atmosphere.

Concept Design Simulation Conclusions JAA - 15 / 19

Preliminary Aerothermal Model

A Skin Friction Coefficient C_F encapsulates the flow regime

- Free-Molecular Flow*** (10 ≤ Kn)
- Transitional *** (0.01 ≤ Kn < 10)

$$Kn = \frac{\varsigma_A}{\lambda} \qquad Re = \frac{\rho_A v \lambda}{\mu_A}$$

$$\frac{dT}{dt} = \left(\frac{A}{m c_s}\right) \left[\frac{1}{4} \rho_{atm} C_F \left(Kn, Re\right) v^3 - 2\xi \sigma \left(T^4 - T_s^4\right)\right]$$
Hypersonic
Aerothermal
Convection*

Radiation to Environment

Concept Design Simulation Conclusions JAA - 16 / 19

^{*}Allen, H.J., and Eggers, A.J., "A Study of the Motion and Aerodynamic Heating of Missiles Entering the Earth's Atmosphere at High Supersonic Speeds," NASA Technical Report #1381, 1958.

^{**}Hirshcel, E.H., Basics of Aerothermodynamics, 1st Ed, Springer-Verlag, Berlin, 2005.

^{***}Koppenwallner, G., Fritsche, Band Bolts of Disintegrating Spacecraft during Uncontrolled re-entry", Proceedings of the Third European Conference on Space Debris, 19 - 21 March 2001, ., and T. Lips, "Survivability and Ground Risk Potential of Screws Darmstadt, Germany.

Ballistic Re-Entry Simulations

Conclusions

- Area-to-Mass is a design parameter that can drive spacecraft dynamics.
- For the right choice of area-to-mass and characteristic length, a body can re-enter while maintaining a low temperature.
- A spacecraft-on-chip architecture may be capable of demonstrating this low-temperature behavior.
- I welcome your advice on how to move forward with this analysis.

Concept Design Simulation Conclusions JAA - 18 / 19

Acknowledgements

- Zac Manchester
- Matt Blair
- Victoria Alexander
- Robert MacCurdy
- Bernardo Cordovez
- Space Systems Design Studio
- Dr. David Caughey
- Dr. Joseph Burns
- Dr. Brian Gilchrist of the University of Michigan
- Dr. Ben Harris of the University of Texas
- US National Science Foundation
- US Department of Defense

- Ryan Zhou
- Phillipe Tosi
- Sharon Kotz
- Alfred Ernst

Microscale Atmospheric Re-Entry Sensors

Justin A. Atchison JAA73@Cornell.edu Cornell University
Space Systems Design Studio

Co-Authors: Zachary R. Manchester

Dr. Mason A. Peck

International Planetary Probe Workshop - 7

June 14-18 2010

Ballistic Re-Entry Simulations

Parametric Search
Length and Thickness vs. Maximum Temperature

Concept Design Simulation Conclusions

Ballistic Re-Entry Simulations

Sample Re-Entry Simulation Edge-On, I cm x 25 µm

Survey of Area-to-Mass Values

THE PROPERTY OF THE PROPERTY O

A/m = **0.0020000** kg/kg

*All Images Courtesy NASA

Aerodynamic Drag

Drag

- Often characterized by the ballistic coefficient.
- Typical spacecraft values fall between 10 and 100 kg/ m^2 .
- A Icm x Icm x 25 μm silicon wafer achieves $\beta = 0.02$.
- Ballistic coefficient drives terminal velocity.

$$\boldsymbol{a}_{AD} = -\frac{1}{2} \frac{A}{m} C_D \rho_A v^2 \, \hat{\boldsymbol{v}}$$

$$\beta = \frac{m}{A \, C_d}$$

$$v_T = \sqrt{\beta \frac{2g}{\rho_A}}$$

Sprite Features

Skin Friction Coefficient

^{*} Hirshcel, E.H., Basics of Aerothermodynamics, 1st Ed, Springer-Verlag, Berlin, 2005.

Concept

Design

Simulation

Conclusions

^{**}Koppenwallner, G., Fritsche, Band Bolts of Disintegrating Spacecraft during Uncontrolled re-entry", Proceedings of the Third European Conference on Space Debris, 19 - 21 March 2001, ., and T. Lips, "Survivability and Ground Risk Potential of Screws Darmstadt, Germany.

Sprite Power System

Parameter	Value	Units
Solar Cells	6	
Voltage	48	V
Current	50	μΑ
Capacitor	20	μF
Maximum Voltage	30	V
Minimum Voltage	18	V
Charge Time	1.0	S
Released Energy	6.4	mJ
Pulse Length	18	ms
DC-DC Efficiency	80	%
Filtered DC Output		
Supply Voltage	3.3	V
Supply Current	86	mA
Power Consumption		
Microcontroller Power	-0.6	mA
Transmitter Power	-29	mA
Margin	56	mA

Concept Design Simulation Conclusions

Sprite Communications Subsystem

Parameter	Value	Units
Transmitter Power Antenna Gain Frequency Bandwidth Pulse Length Chip Rate	10 0 902 1 16 10	mW dB MHz MHz ms kHz
Orbit Altitude Overhead Arc-Length Free Space Loss Atmospheric Attenuation Receiver	500 +/- 20 -146 -2	km deg dB dB
Receiver Gain Noise Temperature Noise Power Margin Received Power Carrier to Noise Ratio Matched Filter Gain Signal to Noise Ratio	18 300 -142 5 -154 0.07 22 11	dB K dBW dB dBW

Concept Design Simulation Conclusions

Communications

"Minimum Shift Keying" (MSK) Signal Modulation

MSK has the advantage of efficiently spreading the signal's energy over a range frequencies.

Concept

Design

Simulation

Conclusions

Angular Accelerations and Length Scale

Cornell University Space Systems Design Studio

Small Sensors

Miniaturization seems to be today's design paradigm.

"Mass is King"

CMOS Imager

Kionix 3-Axis Accelerometer

Rockland Micromagnetometer

AeroAstro Medium Sun Sensor

DARPA Digital Micropropulsion

Concept

Design

Simulation

Conclusions